Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Evid Based Toxicol ; 1(1): 1-15, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264543

RESUMEN

This protocol describes the design and development of a tool for evaluation of the internal validity of in vitro studies, which is needed to include the data as evidence in systematic reviews and chemical risk assessments. The tool will be designed specifically to be applied to cell culture studies, including, but not restricted to, studies meeting the new approach methodology (NAM) definition. The tool is called INVITES-IN (IN VITro Experimental Studies INternal validity). In this protocol, three of the four studies that will be performed to create the release version of INVITES-IN are described. In the first study, evaluation of existing assessment tools will be combined with focus group discussions to identify how characteristics of the design or conduct of an in vitro study can affect its internal validity. Bias domains and items considered to be of relevance for in vitro studies will be identified. In the second study, group agreement on internal validity domains and items of importance for in vitro studies will be identified via a modified Delphi methodology. In the third study, the draft version of the tool will be created, based on the data on relevance and importance of bias domains and items collected in Studies 1 and 2. A separate protocol will be prepared for the fourth study, which includes the user testing and validation of the tool, and collection of users' experience.

4.
Expert Opin Drug Metab Toxicol ; 17(8): 987-1005, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34078212

RESUMEN

Introduction: Genotoxicity is an imperative component of the human health safety assessment of chemicals. Its secure forecast is of the utmost importance for all health prevention strategies and regulations.Areas covered: We surveyed several types of alternative, animal-free approaches ((quantitative) structure-activity relationship (Q)SAR, read-across, Adverse Outcome Pathway, Integrated Approaches to Testing and Assessment) for genotoxicity prediction within the needs of regulatory frameworks, putting special emphasis on data quality and uncertainties issues.Expert opinion: (Q)SAR models and read-across approaches for in vitro bacterial mutagenicity have sufficient reliability for use in prioritization processes, and as support in regulatory decisions in combination with other types of evidence. (Q)SARs and read-across methodologies for other genotoxicity endpoints need further improvements and should be applied with caution. It appears that there is still large room for improvement of genotoxicity prediction methods. Availability of well-curated high-quality databases, covering a broader chemical space, is one of the most important needs. Integration of in silico predictions with expert knowledge, weight-of-evidence-based assessment, and mechanistic understanding of genotoxicity pathways are other key points to be addressed for the generation of more accurate and trustable results.


Asunto(s)
Simulación por Computador , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Alternativas a las Pruebas en Animales/métodos , Animales , Bases de Datos Factuales , Humanos , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
6.
Regul Toxicol Pharmacol ; 114: 104658, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32334037

RESUMEN

To facilitate the practical implementation of the guidance on the residue definition for dietary risk assessment, EFSA has organized an evaluation of applicability of existing in silico models for predicting the genotoxicity of pesticides and their metabolites, including literature survey, application of QSARs and development of Read Across methodologies. This paper summarizes the main results. For the Ames test, all (Q)SAR models generated statistically significant predictions, comparable with the experimental variability of the test. The reliability of the models for other assays/endpoints appears to be still far from optimality. Two new Read Across approaches were evaluated: Read Across was largely successful for predicting the Ames test results, but less for in vitro Chromosomal Aberrations. The worse results for non-Ames endpoints may be attributable to the several revisions of experimental protocols and evaluation criteria of results, that have made the databases qualitatively non-homogeneous and poorly suitable for modeling. Last, Parent/Metabolite structural differences (besides known Structural Alerts) that may, or may not cause changes in the Ames mutagenicity were identified and catalogued. The findings from this work are suitable for being integrated into Weight-of-Evidence and Tiered evaluation schemes. Areas needing further developments are pointed out.


Asunto(s)
Aberraciones Cromosómicas/efectos de los fármacos , Plaguicidas/toxicidad , Relación Estructura-Actividad Cuantitativa , Bases de Datos Factuales , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Mutagenicidad , Plaguicidas/análisis , Plaguicidas/metabolismo , Medición de Riesgo
7.
J Exp Clin Cancer Res ; 39(1): 2, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31910865

RESUMEN

BACKGROUND: Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. METHODS: A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. RESULTS: Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. CONCLUSIONS: These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.


Asunto(s)
Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Células Madre Neoplásicas/metabolismo , Regulación hacia Arriba , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Trasplante de Neoplasias , Oxaliplatino/farmacología , Pronóstico
8.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30357358

RESUMEN

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Asunto(s)
Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Relación Estructura-Actividad Cuantitativa , Simulación por Computador , Bases de Datos Factuales , Humanos , Japón , Pruebas de Mutagenicidad
9.
Methods Mol Biol ; 1800: 447-473, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29934905

RESUMEN

Knowledge of the genotoxicity and carcinogenicity potential of chemical substances is one of the key scientific elements able to better protect human health. Genotoxicity assessment is also considered as prescreening of carcinogenicity. The assessment of both endpoints is a fundamental component of national and international legislations, for all types of substances, and has stimulated the development of alternative, nontesting methods. Over the recent decades, much attention has been given to the use and further development of structure-activity relationships-based approaches, to be used in isolation or in combination with in vitro assays for predictive purposes. In this chapter, we briefly introduce the rationale for the main (Q)SAR approaches, and detail the most important regulatory initiatives and frameworks. It appears that the existence and needs of regulatory frameworks stimulate the development of better predictive tools; in turn, this allows the regulators to fine-tune their requirements for an improved defense of human health.


Asunto(s)
Pruebas de Carcinogenicidad , Pruebas de Mutagenicidad , Relación Estructura-Actividad Cuantitativa , Toxicología/métodos , Bases de Datos Factuales , Humanos , Medición de Riesgo , Navegador Web
10.
Regul Toxicol Pharmacol ; 86: 18-24, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28232102

RESUMEN

The protection from endocrine disruptors is a high regulatory priority. Key issues are the characterization of in vivo assays, and the identification of reference chemicals to validate alternative methods. In this exploration, publicly available databases for in vivo assays for endocrine disruption were collected and compared: Rodent Uterotrophic, Rodent Repeated Dose 28-day Oral Toxicity, 21-Day Fish, and Daphnia magna reproduction assays. Only the Uterotrophic and 21-Day Fish assays results correlated with each other. The in vivo assays data were viewed in relation to the Adverse Outcome Pathway, using as a probe 18 ToxCast in vitro assays for the ER pathway. These are the same data at the basis of the EPA agonist ToxERscore model, whose good predictivity was confirmed. The multivariate comparison of the in vitro/in vivo assays suggests that the interaction with receptors is a major determinant of in vivo results, and is the critical basis for building predictive computational models. In agreement with the above, this work also shows that it is possible to build predictive models for the Uterotrophic and 21-Day Fish assays using a limited selection of Toxcast assays.


Asunto(s)
Rutas de Resultados Adversos , Daphnia/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Animales , Bioensayo , Sistema Endocrino/efectos de los fármacos , Pruebas de Toxicidad
11.
Regul Toxicol Pharmacol ; 78: 45-52, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27090483

RESUMEN

This paper presents new data-based analyses on the ability of alternative methods to predict the skin sensitization potential of chemicals. It appears that skin sensitization, as shown in humans and rodents, can be predicted with good accuracy both with in vitro assays and QSAR approaches. The accuracy is about the same: 85-90%. Given that every biological measure has inherent uncertainty, this performance is quite remarkable. Overall, there is a good correlation between human data and experimental in vivo systems, except for sensitizers of intermediate potency. This uncertainty/variability is probably the reason why alternative methods are quite efficient in predicting both strong and non-sensitizers, but not the intermediate potency sensitizers. A detailed analysis of the predictivity of the individual approaches shows that the biological in vitro assays have limited added value in respect to the in chemico/QSAR ones, and suggests that the primary interaction with proteins is the rate-limiting step of the entire process. This confirms evidence from other fields (e.g., carcinogenicity, QSAR) indicating that successful predictive models are based on the parameterization of a few mechanistic features/events, whereas the consideration of all events supposedly involved in a toxicity pathway contributes to increase the uncertainty of the predictions.


Asunto(s)
Dermatitis Alérgica por Contacto/etiología , Dermatitis Irritante/etiología , Erupciones por Medicamentos/etiología , Haptenos/toxicidad , Irritantes/toxicidad , Modelos Moleculares , Pruebas de Irritación de la Piel/métodos , Piel/efectos de los fármacos , Alternativas a las Pruebas en Animales , Animales , Bioensayo , Bases de Datos Factuales , Dermatitis Alérgica por Contacto/inmunología , Análisis Discriminante , Erupciones por Medicamentos/inmunología , Haptenos/química , Haptenos/clasificación , Humanos , Irritantes/química , Irritantes/clasificación , Ensayo del Nódulo Linfático Local , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Medición de Riesgo , Piel/inmunología , Incertidumbre
12.
Artículo en Inglés | MEDLINE | ID: mdl-26398111

RESUMEN

This article studies alternative toxicological approaches, with new (skin sensitization, ToxCast) and previous (carcinogenicity) analyses. Quantitative modeling of rate-limiting steps in skin sensitization and carcinogenicity predicts the majority of toxicants. Similarly, successful (Quantitative) Structure-Activity Relationships models exploit the quantification of only one, or few rate-limiting steps. High-throughput assays within ToxCast point to promising associations with endocrine disruption, whereas markers for pathways intermediate events have limited correlation with most endpoints. Since the pathways may be very different (often not simple linear chains of events), quantitative analysis is necessary to identify the type of mechanism and build the appropriate model.


Asunto(s)
Pruebas Cutáneas/métodos , Pruebas de Toxicidad/métodos , Daño del ADN , Modelos Teóricos , Pruebas de Mutagenicidad/métodos , Relación Estructura-Actividad Cuantitativa
13.
Artículo en Inglés | MEDLINE | ID: mdl-25813724

RESUMEN

The long-term carcinogenesis bioassays have played a central role in protecting human health, but for ethical and practical reasons their use is dramatically diminishing and the genotoxicity short-term tests have taken the pivotal role in the pre-screening of chemical carcinogenicity. However, this strategy cannot detect nongenotoxic carcinogens. Since up to 25% of IARC human carcinogens are recognized to have nongenotoxic mechanisms of action, the risk they pose to human health cannot be disregarded, and it is urgent to fill the gap in the tools for alternative testing. In this paper, we analyze from different perspectives the ability of Cell Transformation Assays to identify nongenotoxic carcinogens, and we conclude that the Syrian hamster embryo cells test is able to identify nongenotoxic carcinogens with 80-90% efficiency, and thus, can play an important role in integrated, alternative testing strategies.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/patología , Embrión de Mamíferos/efectos de los fármacos , Animales , Pruebas de Carcinogenicidad/métodos , Línea Celular Tumoral , Cricetinae , Daño del ADN/efectos de los fármacos , Embrión de Mamíferos/citología , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Pruebas de Mutagenicidad/métodos , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo
14.
Mutat Res Genet Toxicol Environ Mutagen ; 758(1-2): 56-61, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24076401

RESUMEN

For decades, traditional toxicology has been the ultimate source of information on the carcinogenic potential of chemicals; however with increasing demand on regulation of chemicals and decreasing resources for testing, opportunities to accept "alternative" approaches have dramatically expanded. The need for tools able to identify carcinogens in shorter times and at a lower cost in terms of animal lives and money is still an open issue, and the present strategies and regulations for carcinogenicity pre-screening do not adequately protect human health. In previous papers, we have proposed an integrated in vitro/in silico strategy that detects DNA-reactivity and tissue disorganization/disruption by chemicals, and we have shown that the combination of Salmonella and Structural Alerts for the DNA-reactive carcinogens, and in vitro cell transformation assays for nongenotoxic carcinogens permits the identification of a very large proportion (up to 95%) of rodent carcinogens, while having a considerable specificity with the rodent noncarcinogens. In the present paper we expand the previous investigation and show that this alternative strategy identifies correctly IARC Classes 1 and 2 carcinogens. If implemented, this alternative strategy can contribute to improve the protection of human health while decreasing the use of animals.


Asunto(s)
Carcinógenos/análisis , Transformación Celular Neoplásica/efectos de los fármacos , ADN/efectos de los fármacos , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad
15.
Mutagenesis ; 28(4): 401-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23470317

RESUMEN

Currently, the public has access to a variety of databases containing mutagenicity and carcinogenicity data. These resources are crucial for the toxicologists and regulators involved in the risk assessment of chemicals, which necessitates access to all the relevant literature, and the capability to search across toxicity databases using both biological and chemical criteria. Towards the larger goal of screening chemicals for a wide range of toxicity end points of potential interest, publicly available resources across a large spectrum of biological and chemical data space must be effectively harnessed with current and evolving information technologies (i.e. systematised, integrated and mined), if long-term screening and prediction objectives are to be achieved. A key to rapid progress in the field of chemical toxicity databases is that of combining information technology with the chemical structure as identifier of the molecules. This permits an enormous range of operations (e.g. retrieving chemicals or chemical classes, describing the content of databases, finding similar chemicals, crossing biological and chemical interrogations, etc.) that other more classical databases cannot allow. This article describes the progress in the technology of toxicity databases, including the concepts of Chemical Relational Database and Toxicological Standardized Controlled Vocabularies (Ontology). Then it describes the ISSTOX cluster of toxicological databases at the Istituto Superiore di Sanitá. It consists of freely available databases characterised by the use of modern information technologies and by curation of the quality of the biological data. Finally, this article provides examples of analyses and results made possible by ISSTOX.


Asunto(s)
Carcinógenos , Bases de Datos Factuales , Gestión de la Información , Mutágenos , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Humanos , Internet , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Medición de Riesgo
17.
Methods Mol Biol ; 930: 67-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23086838

RESUMEN

Aiming at understanding the structural and physical chemical basis of the biological activity of chemicals, the science of structure-activity relationships has seen dramatic progress in the last decades. Coarse-grain, qualitative approaches (e.g., the structural alerts), and fine-tuned quantitative structure-activity relationship models have been developed and used to predict the toxicological properties of untested chemicals. More recently, a number of approaches and concepts have been developed as support to, and corollary of, the structure-activity methods. These approaches (e.g., chemical relational databases, expert systems, software tools for manipulating the chemical information) have dramatically expanded the reach of the structure-activity work; at present, they are powerful and inescapable tools for computer chemists, toxicologists, and regulators. This chapter, after a general overview of traditional and well-known approaches, gives a detailed presentation of the latter more recent support tools freely available in the public domain.


Asunto(s)
Carcinógenos/toxicidad , Determinación de Punto Final/métodos , Mutágenos/toxicidad , Animales , Humanos , Relación Estructura-Actividad , Pruebas de Toxicidad
18.
Mutagenesis ; 28(1): 107-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23132285

RESUMEN

The study of the chemical carcinogenesis mechanisms and the design of efficient prevention strategies and measures are of crucial importance to protect human health. The long-term carcinogenesis bioassays have played a central role in protecting human health, but for ethical and practical reasons their use is dramatically diminishing, and the genotoxicity short-term tests have taken the pivotal role in the pre-screening of carcinogenicity. However, there is evidence that this strategy is not sensitive enough to detect all genotoxic carcinogens and it cannot detect nongenotoxic carcinogens. In a previous article, we have shown that an integrated strategy consisting of the in vitro Ames and Syrian Hamster Embryo cells transformation assays, combined with structure-activity relationships, is a valid alternative to the present pre-screening strategies. Here, we expand the previous investigation by (i) including results of cell transformation assays on inorganics, together with an additional assay (Bhas 42), and (ii) considering new structural alerts for nongenotoxic carcinogenicity. We also present a new analysis on global relationships between toxicological endpoints. The new results confirm that the previously proposed integrated, alternative strategy is an efficient tool to identify both genotoxic and nongenotoxic carcinogens, with an estimated 90-95% sensitivity.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/química , Carcinógenos/toxicidad , Animales , Línea Celular Transformada , Cricetinae , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Mesocricetus , Roedores , Estadística como Asunto/métodos
19.
J Biomed Semantics ; 3 Suppl 1: S7, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22541598

RESUMEN

BACKGROUND: The OpenTox Framework, developed by the partners in the OpenTox project (http://www.opentox.org), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing. RESULTS: The following related ontologies have been developed for OpenTox: a) Toxicological ontology - listing the toxicological endpoints; b) Organs system and Effects ontology - addressing organs, targets/examinations and effects observed in in vivo studies; c) ToxML ontology - representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology- representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink-ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology.OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources.The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists). AVAILABILITY: The OpenTox toxicological ontology projects may be accessed via the OpenTox ontology development page http://www.opentox.org/dev/ontology; the OpenTox ontology is available as OWL at http://opentox.org/api/1 1/opentox.owl, the ToxML - OWL conversion utility is an open source resource available at http://ambit.svn.sourceforge.net/viewvc/ambit/branches/toxml-utils/

20.
ALTEX ; 29(2): 129-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22562486

RESUMEN

Foreign substances can have a dramatic and unpredictable adverse effect on human health. In the development of new therapeutic agents, it is essential that the potential adverse effects of all candidates be identified as early as possible. The field of predictive toxicology strives to profile the potential for adverse effects of novel chemical substances before they occur, both with traditional in vivo experimental approaches and increasingly through the development of in vitro and computational methods which can supplement and reduce the need for animal testing. To be maximally effective, the field needs access to the largest possible knowledge base of previous toxicology findings, and such results need to be made available in such a fashion so as to be interoperable, comparable, and compatible with standard toolkits. This necessitates the development of open, public, computable, and standardized toxicology vocabularies and ontologies so as to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. Such ontology development will support data management, model building, integrated analysis, validation and reporting, including regulatory reporting and alternative testing submission requirements as required by guidelines such as the REACH legislation, leading to new scientific advances in a mechanistically-based predictive toxicology. Numerous existing ontology and standards initiatives can contribute to the creation of a toxicology ontology supporting the needs of predictive toxicology and risk assessment. Additionally, new ontologies are needed to satisfy practical use cases and scenarios where gaps currently exist. Developing and integrating these resources will require a well-coordinated and sustained effort across numerous stakeholders engaged in a public-private partnership. In this communication, we set out a roadmap for the development of an integrated toxicology ontology, harnessing existing resources where applicable. We describe the stakeholders' requirements analysis from the academic and industry perspectives, timelines, and expected benefits of this initiative, with a view to engagement with the wider community.


Asunto(s)
Toxicología/métodos , Vocabulario Controlado , Alternativas a las Pruebas en Animales , Animales , Biología Computacional , Bases de Datos Factuales , Humanos , Investigación , Medición de Riesgo , Toxicología/economía , Toxicología/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...